资源类型

期刊论文 136

会议信息 1

会议视频 1

年份

2023 14

2022 14

2021 12

2020 12

2019 9

2018 5

2017 6

2016 6

2015 6

2014 4

2013 3

2012 2

2011 6

2010 7

2009 7

2008 4

2007 9

2006 3

2005 2

2004 1

展开 ︾

关键词

带传动 2

金属带 2

-10#柴油微乳剂 1

3D打印 1

Fitzhugh-Nagumo;混沌;分数阶;磁通量 1

GIC 1

Lorentz 1

WEM法 1

三元空间 1

中子衍射,磁相图,晶体结构 1

中性原子量子计算 1

临震前磁异常 1

主动磁悬浮轴承;迭代学习控制;干扰观测器 1

人脑功能磁共振 1

人造细菌鞭毛(ABFs) 1

传动比 1

储氢合金 1

催化剂 1

光量子计算 1

展开 ︾

检索范围:

排序: 展示方式:

One-pot hydrothermal fabrication of BiVO/FeO/rGO composite photocatalyst for the simulated solar light-driven

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1470-y

摘要:

• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation.

关键词: Photocatalysis     Ternary magnetic photocatalyst     Visible-light-driven     Free radicals trapping     Reusability     Recycling    

Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen

Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1248-7

摘要: Abstract •The MoS2/SiC/GO composite has a strong photocatalytic activity than SiC. •The optimal catalyst yielded the highest quantum of 21.69%. •GO acts as a bridge for electron passage in photocatalytic reaction. In recent times, therehas been an increasing demand for energy which has resulted in an increased consumption of fossil fuels thereby posing a number of challenges to the environment. In the course finding possible solutions to this environmental canker, solar photocatalytic water splitting to produce hydrogengas has been identified as one of the most promising methods for generating renewable energy. To retard the recombination of photogenerated carriers and improve the efficiencyof photocatalysis, the present paper reports a facile method called the hydrothermal method, which was used to prepare ternary graphene-like photocatalyst. A “Design Expert” was used to investigate the influence of the loading weight of Mo and GO as well as the temperature of hydrothermal reaction and their interactions on the evolution of hydrogen (H2) in 4 h. The experimental results showed that the ternary graphene-like photocatalyst has a strong photocatalytic hydrogen production activity compared to that of pure SiC. In particular, the catalyst added 2.5 wt% of GO weight yielded the highest quantum of 21.69 % at 400–700 nm of wavelength. The optimal evolution H2 in 4 h conditions wasobtained as follows: The loading weight of Mo was 8.19 wt%, the loading weight of GO was 2.02 wt%, the temperature of the hydrothermal reaction was 200.93°C. Under the optimum conditions, the evolution of H2 in 4 h could reach 4.2030 mL.

关键词: Water splitting     Visible light     Graphene-like photocatalyst     Response surface methodology    

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1438-1459 doi: 10.1007/s11705-022-2166-y

摘要: The development of CO2 into hydrocarbon fuels has emerged as a green method that could help mitigate global warning. The novel structured photocatalyst is a promising material for use in a photocatalytic and magneto-electrochemical method that fosters the reduction of CO2 by suppressing the recombination of electron−hole pairs and effectively transferring the electrons to the surface for the chemical reaction of CO2 reduction. In our study, we have developed a novel-structured AgCuZnS2–graphene–TiO2 to analyze its catalytic activity toward the selective evolution of CO2. The selectivity of each nanocomposite substantially enhanced the activity of the AgCuZnS2–graphene–TiO2 ternary nanocomposite due to the successful interaction, and the selectivity of the final product was improved to a value 3 times higher than that of the pure AgCuZnS2 and 2 times higher than those of AgCuZnS2–graphene and AgCuZnS2–TiO2 under ultra-violet (UV)-light (λ = 254 nm) irradiation in the photocatalytic process. The electrochemical CO2 reduction test was also conducted to analyze the efficacy of the AgCuZnS2–graphene–TiO2 when used as a working electrode in laboratory electrochemical cells. The electrochemical process was conducted under different experimental conditions, such as various scan rates (mV·s–1), under UV-light and with a 0.07 T magnetic-core. The evolution of CO2 substantially improved under UV-light (λ = 254 nm) and with 0.07 T magnetic-core treatment; these improvements were attributed to the facts that the UV-light activated the electron-transfer pathway and the magnetic core controlled the pathway of electron-transmission/prevention to protect it from chaotic electron movement. Among all tested nanocomposites, AgCuZnS2–graphene–TiO2 absorbed the CO2 most strongly and showed the best ability to transfer the electron to reduce the CO2 to methanol. We believe that our newly-modeled ternary nanocomposite opens up new opportunities for the evolution of CO2 to methanol through an electrochemical and photocatalytic process.

关键词: ternary nanocomposite     photocatalytic     electrochemical CO2 reduction     UV-light     magnetic core    

Microfluidic production of liposomes through liquid–liquid phase separation in ternary droplets

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1017-1022 doi: 10.1007/s11705-021-2118-y

摘要: Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

关键词: microfluidics     liposomes     ternary droplets     phase separation    

A mini-review of ferrites-based photocatalyst on application of hydrogen production

《能源前沿(英文)》 2021年 第15卷 第3期   页码 621-630 doi: 10.1007/s11708-021-0761-0

摘要: Photocatalytic water splitting for hydrogen production is a promising strategy to produce renewable energy and decrease production cost. Spinel-ferrites are potential photocatalysts in photocatalytic reaction system due to their room temperature magnetization, the high thermal and chemical stability, narrow bandgap with broader visible light absorption, and proper conduction band energy level with strong oxidation activity for water or organic compounds. However, the fast recombination of the photoexcited electrons and holes is a critical drawback of ferrites. Therefore, the features of crystallinity, particle size, specific surface area, morphology, and band energy structure have been summarized and investigated to solve this issue. Moreover, composites construction with ferrites and the popular support of TiO2 or g-C3N4 are also summarized to illustrate the advanced improvement in photocatalytic hydrogen production. It has been shown that ferrites could induce the formation of metal ions impurity energy levels in TiO2, and the strong oxidation activity of ferrites could accelerate the oxidation reaction kinetics in both TiO2/ferrites and g-C3N4/ferrites systems. Furthermore, two representative reports of CaFe2O4/MgFe2O4 composite and ZnFe2O4/CdS composite are used to show the efficient heterojunction in a ferrite/ferrite composite and the ability of resistance to photo-corrosion, respectively.

关键词: photocatalyst     spinel-ferrite     composite     photocatalytic hydrogen production    

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 102-115 doi: 10.1007/s11705-022-2179-6

摘要: High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm–2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (≥ 75 h) at an extremely high current density of 200 mA·cm–2. In contrast, the binary hydroxides present quick decay at 200 mA·cm–2 or even reduced current densities (150 and 100 mA·cm–2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

关键词: oxygen evolution reaction     electrocatalysts     ternary layered double hydroxides     long-term stability    

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1061-8

摘要:

•The efficient PEC degradation of RhB is realized using no photocatalyst.

•The efficient PEC degradation of RhB features the low salinity.

•The PEC degradation of RhB takes place on the anode and cathode simultaneously.

关键词: Energy relay structure     Energy saving     Photocatalyst-free and low-salinity degradation     Photoelectrochemical cell    

A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications

《化学科学与工程前沿(英文)》   页码 1632-1642 doi: 10.1007/s11705-022-2187-6

摘要: Although metal–organic frameworks offer a new platform for developing versatile sorption materials, yet coordinating the functionality, structure and component of these materials remains a great challenge. It depends on a comprehensive knowledge of a “real sorption mechanism”. Herein, a ternary mechanism for U(VI) uptake in metal–organic frameworks was reported. Analogous MIL-100s (Al, Fe, Cr) were prepared and studied for their ability to sequestrate U(VI) from aqueous solutions. As a result, MIL-100(Al) performed the best among the tested materials, and MIL-100(Cr) performed the worst. The nuclear magnetic resonance technique combined with energy-dispersive X-ray spectroscopy and zeta potential measurement reveal that U(VI) uptake in the three metal–organic frameworks involves different mechanisms. Specifically, hydrated uranyl ions form outer-sphere complexes in the surface of MIL-100s (Al, Fe) by exchanging with hydrogen ions of terminal hydroxyl groups (Al-OH2, Fe-OH2), and/or, hydrated uranyl ions are bound directly to Al(III) center in MIL-100(Al) through a strong inner-sphere coordination. For MIL-100(Cr), however, the U(VI) uptake is attributed to electrostatic attraction. Besides, the sorption mechanism is also pH and ionic strength dependent. The present study suggests that changing metal center of metal–organic frameworks and sorption conditions alters sorption mechanism, which helps to construct effective metal–organic frameworks-based sorbents for water purification.

关键词: U(VI)     metal–organic frameworks     adsorption mechanism     metal node    

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 229-240 doi: 10.1007/s11709-019-0597-4

摘要: The purpose of the investigation was to study the effect of binary and ternary blends of cement on the mechanical properties of pervious concrete (PC) specimen through destructive (DT) and non-destructive testing (NDT). Various combinations of fly ash (FA), limestone powder (LP), metakaolin (MK), and silica fume (SF) as mineral admixtures have been investigated to partially replace the cement up to 30% by weight in PC. Standard cube specimens of size 150 mm × 150 mm × 150 mm of binary and ternary blends of mineral admixture of pervious concrete were prepared to conduct standard compressive strength test and split tensile test at 7 and 28 days of curing. The ultrasonic pulse velocity (UPV) test and Rebound Hammer test were used as a non-destructive testing tool to substantiate the robustness of PC and to determine the approximate mechanical properties where other destructive testing tools are not feasible in case of in-place pervious pavements. Overall the pervious concrete made with LP based ternary blends (PLM and PLS) were found to perform better than FA based ternary blends (PFM and PFS) and control mix (PC) in destructive and non-destructive testing.

关键词: mineral admixture     ternary     compressive strength     split tensile strength     pervious concrete     ultrasonic pulse velocity    

Efficient flower-like ZnSe/CuZnS photocatalyst for hydrogen production application

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1301-1310 doi: 10.1007/s11705-022-2295-3

摘要: Photocatalytic hydrogen production utilizing abundant solar energy to produce high-calorie, clean, and pollution-free hydrogen is an important approach to solving environmental and resource problems. In this work, a high-efficiency flower-like ZnSe/Cu0.08Zn0.92S photocatalyst was constructed through element doping and the formation of a Z-scheme heterojunction. The synergistic effect of Cu doping and the built-in electric field in the heterojunction enhanced light absorption and utilization by the ZnSe/Cu0.08Zn0.92S microflowers, accelerated the separation and transfer of photogenerated electrons and effectively inhibited electron–hole recombination. Thus the photocatalytic hydrogen production ability of the ZnSe/Cu0.08Zn0.92S microflowers was increased significantly. The highly stable ZnSe/Cu0.08Zn0.92S microflowers could provide excellent catalysis of photocatalytic hydrogen production.

关键词: photocatalysis     Cu0.08Zn0.92S     ZnSe     hydrogen production    

Assessment and prediction of the mechanical properties of ternary geopolymer concrete

Jinliang LIU; Wei ZHAO; Xincheng SU; Xuefeng XIE

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1436-1452 doi: 10.1007/s11709-022-0889-y

摘要: This paper utilized granulated blast furnace slag (GBFS), fly ash (FA), and zeolite powder (ZP) as the binders of ternary geopolymer concrete (TGC) activated with sodium silicate solution. The effects of alkali content (AC) and alkaline activator modulus (AAM) on the compressive strength, flexural tensile strength and elastic modulus of TGC were tested and the SEM micrographs were investigated. The experimental results were then compared with the predictions based on models of mechanical properties, and the amended models of TGC were proposed taking account of the effects of AC and AAM. The results indicated that increasing AC and reducing AAM which were in the specific ranges (5% to 7% and 1.1 to 1.5, respectively) had positive effects on the mechanical properties of TGC. In addition, the flexural tensile strength of TGC was 27.7% higher than that of OPC at the same compressive strength, while the elastic modulus of TGC was 25.8% lower than that of OPC. Appropriate prediction models with the R2 of 0.945 and 0.987 for predicting flexural tensile strength and elastic modulus using compressive strength, respectively, were proposed. Fitting models, considering the effects of AC and AAM, were also proposed to predict the mechanical properties of TGC.

关键词: Ternary Geopolymer Concrete (TGC)     alkaline activator modulus     alkali content     mechanical properties     assessment    

All-inorganic TiO/CsAgBiBr composite as highly efficient photocatalyst under visible light irradiation

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1925-1936 doi: 10.1007/s11705-023-2344-6

摘要: In recent years, limited photocatalysis efficiency and wide band gap have hindered the application of TiO2 in the field of photocatalysis. A leading star in photocatalysis has been revealed as lead-free Cs2AgBiBr6 double halide perovskite nanocrystals, owing to its strong visible light absorption and tunable band gap. In this work, this photocatalytic process was facilitated by a unique TiO2/Cs2AgBiBr6 composite, which was identified as an S-cheme heterojunction. TiO2/Cs2AgBiBr6 composite was investigated for its structure and photocatalytic behavior. The results showed that when the perovskite dosage is 40%, the photocatalytic rate of TiO2 could be boosted to 0.1369 min–1. This paper discusses and proposes the band gap matching, carrier separation, and photocatalytic mechanism of TiO2/Cs2AgBiBr6 composites, which will facilitate the generation of new ideas for improving TiO2’s photocatalytic performance.

关键词: Cs2AgBiBr6 nanocrystals     visible-light photocatalyst     Cs2AgBiBr6/TiO2 heterojunction    

Modeling and analysis of magnetic dipoles in weak magnetic field

WANG Zhaoxia, ZHANG Weimin, LIU Hongguang

《机械工程前沿(英文)》 2008年 第3卷 第2期   页码 222-225 doi: 10.1007/s11465-008-0028-z

摘要: The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory. The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole. The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations. Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

关键词: geomagnetic     theory     important criterion     magnetic leakage     normal component    

A simple and cheap method for preparation of coupled ZrO2/ZnO with high photocatalytic activities

WANG Zheng, ZHANG Bingru, LI Fengting

《环境科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 454-458 doi: 10.1007/s11783-007-0072-7

摘要: The objective of this study was to prepare a new photocatalyst with high activities for degradation of organic pollutants. Coupled ZrO/ZnO photocatalyst was prepared with a simple precipitation method with cheap raw

关键词: objective     ZrO/ZnO photocatalyst     photocatalyst     precipitation     degradation    

Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO absorption

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1500-9

摘要:

•Addition of hindered amine increased thermal stability and viscosity of TTTM.

关键词: Ternary transition-temperature mixture     FT-IR and thermal stability analysis     Viscosity and correlation study     Eyring’s absolute rate theory     CO2 solubility     Density functional theory (DFT).    

标题 作者 时间 类型 操作

One-pot hydrothermal fabrication of BiVO/FeO/rGO composite photocatalyst for the simulated solar light-driven

期刊论文

Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen

Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu

期刊论文

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

期刊论文

Microfluidic production of liposomes through liquid–liquid phase separation in ternary droplets

期刊论文

A mini-review of ferrites-based photocatalyst on application of hydrogen production

期刊论文

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable

期刊论文

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

期刊论文

A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications

期刊论文

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

期刊论文

Efficient flower-like ZnSe/CuZnS photocatalyst for hydrogen production application

期刊论文

Assessment and prediction of the mechanical properties of ternary geopolymer concrete

Jinliang LIU; Wei ZHAO; Xincheng SU; Xuefeng XIE

期刊论文

All-inorganic TiO/CsAgBiBr composite as highly efficient photocatalyst under visible light irradiation

期刊论文

Modeling and analysis of magnetic dipoles in weak magnetic field

WANG Zhaoxia, ZHANG Weimin, LIU Hongguang

期刊论文

A simple and cheap method for preparation of coupled ZrO2/ZnO with high photocatalytic activities

WANG Zheng, ZHANG Bingru, LI Fengting

期刊论文

Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO absorption

期刊论文